C Programming, Discrete Math & Calculus 1 - Computer Science 1
Responsible | Lorcan Camps |
---|---|
Last Update | 23/02/2022 |
Completion Time | 1 day 11 hours 19 minutes |
Members | 7 |
Share This Course
Share Link
Share on Social Media
Share by Email
Please login to share this C Programming, Discrete Math & Calculus 1 - Computer Science 1 by email.
Advanced
Technical
Computer Science
-
Structured programming (programming in c)
-
C Programming Tutorial for Beginners
-
C Programming Tutorial | Learn C programming | C language
-
-
Discrete mathematics part 1
-
Discrete Math - 1.1.1 Propositions, Negations, Conjunctions and Disjunctions
-
Discrete Math - 1.1.2 Implications Converse, Inverse, Contrapositive and Biconditionals
-
Discrete Math - 1.1.3 Constructing a Truth Table for Compound Propositions
-
Discrete Math 1.2.1 - Translating Propositional Logic Statements
-
Discrete Math - 1.2.2 Solving Logic Puzzles
-
Discrete Math - 1.2.3 Introduction to Logic Circuits
-
Discrete Math - 1.3.1 “Proving” Logical Equivalences with Truth Tables
-
Discrete Math - 1.3.2 Key Logical Equivalences Including De Morgan’s Laws
-
Discrete Math - 1.3.3 Constructing New Logical Equivalences
-
Discrete Math - 1.4.1 Predicate Logic
-
Discrete Math - 1.4.2 Quantifiers
-
Discrete Math - 1.4.3 Negating and Translating with Quantifiers
-
Discrete Math - 1.5.1 Nested Quantifiers and Negations
-
Discrete Math - 1.5.2 Translating with Nested Quantifiers
-
Discrete Math - 1.6.1 Rules of Inference for Propositional Logic
-
Discrete Math - 1.6.2 Rules of Inference for Quantified Statements
-
Discrete Math - 1.7.1 Direct Proof
-
Discrete Math - 1.7.2 Proof by Contraposition
-
Discrete Math - 1.7.3 Proof by Contradiction
-
Discrete Math - 1.8.1 Proof by Cases
-
Discrete Math - 1.8.2 Proofs of Existence And Uniqueness
-
Discrete Math - 2.1.1 Introduction to Sets
-
Discrete Math - 2.1.2 Set Relationships
-
Discrete Math - 2.2.1 Operations on Sets
-
Discrete Math - 2.2.2 Set Identities
-
Discrete Math - 2.2.3 Proving Set Identities
-
Discrete Math - 2.3.1 Introduction to Functions
-
Discrete Math - 2.3.2 One to One and Onto Functions
-
Discrete Math - 2.3.3 Inverse Functions and Composition of Functions
-
Discrete Math - 2.3.4 Useful Functions to Know
-
Discrete Math - 2.4.1 Introduction to Sequences
-
Discrete Math - 2.4.2 Recurrence Relations
-
Discrete Math - 2.4.3 Summations and Sigma Notation
-
Discrete Math - 2.4.4 Summation Properties and Formulas
-
-
Calculus part 1
-
Calculus 1.1 A Preview of Calculus
-
Calculus 1.2.1 Find Limits Graphically and Numerically: Estimate a Limit Numerically or Graphically
-
Calculus 1.2.2 Find Limits Graphically and Numerically: When Limits Fail to Exist
-
Calculus 1.2.3 Find Limits Graphically and Numerically: The Formal Definition of A Limit
-
Calculus 1.3.1 Evaluating Limits Using Properties of Limits
-
Calculus 1.3.2 Evaluating Limits By Dividing Out or Rationalizing
-
Calculus 1.3.3 Evaluating Limits Using the Squeeze Theorem
-
Calculus 1.4.1 Continuity on Open Intervals
-
Calculus 1.4.2 Continuity on Closed Intervals
-
Calculus 1.4.3 Properties of Continuity
-
Calculus 1.4.4 The Intermediate Value Theorem
-
Calculus 1.5.1 Determine Infinite Limits
-
Calculus 1.5.2 Determine Vertical Asymptotes
-
Calculus 2.1.1 Find the Slope of a Tangent Line
-
Calculus 2.1.2 Derivatives Using the Limit Definition
-
Calculus 2.1.3 Differentiability and Continuity
-
Calculus 2.2.1 Basic Differentiation Rules
-
Calculus 2.2.2 Rates of Change
-
Calculus 2.3.1 The Product and Quotient Rules
-
Calculus 2.3.2 Derivatives of Trigonometric Functions
-
Calculus 2.3.3 Higher Order Derivatives
-
Calculus 2.4.1 The Chain Rule
-
Calculus 2.4.2 The General Power Rule
-
Calculus 2.4.3 Simplifying Derivatives
-
Calculus 2.4.4 Trigonometric Functions and the Chain Rule
-
Calculus 2.5.1 Implicit and Explicit Functions
-
Calculus 2.5.2 Implicit Differentiation
-
Calculus I - 2.6.1 Related Rates - Water Ripples (2D Circle)
-
Calculus I - 2.6.2 Related Rates - Balloon Inflation (Sphere)
-
Calculus I - 2.6.3 Related Rates - Modeling with Triangles
-
Calculus 3.1.1 Extrema of a Function on an Interval
-
Calculus 3.1.2 Relative Extrema of a Function on an Open Interval
-
Calculus 3.1.3 Find Extrema on a Closed Interval
-
Calculus 3.2.1 Rolle’s Theorem
-
Calculus 3.2.2 The Mean Value Theorem
-
Calculus 3.3.1 Increasing and Decreasing Intervals
-
Calculus 3.3.2 The First Derivative Test
-
Calculus 3.4.1 Intervals of Concavity
-
Calculus 3.4.2 Points of Inflection
-
Calculus 3.4.3 The Second Derivative Test
-
Calculus 3.4.4 Putting It All Together
-
Calculus 3.5.1 Determine Finite Limits at Infinity
-
Calculus 3.5.2 Determine Horizontal Asymptotes of a Function
-
Calculus 3.5.3 Horizontal Asymptotes - Tricky Examples
-
Calculus 3.5.4 Determine Infinite Limits at Infinity
-
Calculus 3.6.1 A Summary of Curve Sketching
-
Calculus 3.6.2 Curve Sketching - Full Practice
-
Calculus 3.7.1 Optimization Problems
-
Calculus 3.7.2 Optimization Practice
-
Calculus 4.1.1 Antiderivatives
-
Calculus 4.1.2 Basic Integration Rules
-
Calculus 4.1.3 Find Particular Solutions to Differential Equations
-
Calculus 4.2.1 Sigma Notation
-
Calculus 4.2.2 The Concept of Area
-
Calculus 4.2.3 The Approximate Area of a Plane Region
-
Calculus 4.2.4 Finding Area By The Limit Definition
-
Calculus 4.3.1 Riemann Sums
-
Calculus 4.3.2 Definite Integrals
-
Calculus 4.3.3 Properties of Definite Integrals
-
Calculus 4.4.1 The Fundamental Theorem of Calculus
-
Calculus 4.4.2 The Mean Value Theorem for Integrals
-
Calculus 4.4.3 The Average Value of a Function
-
Calculus 4.4.4 The Second Fundamental Theorem of Calculus
-
Calculus 4.5.1 Use Pattern Recognition in Indefinite Integrals
-
Calculus 4.5.2 Change of Variables for Indefinite Integrals
-
Calculus 5.1.1 Properties of the Natural Logarithmic Function
-
Calculus 5.1.2 The Number e
-
Calculus 5.1.3 The Derivative of the Natural Logarithmic Function
-
Calculus 5.2.1 The Log Rule for Integration
-
Calculus 5.2.2 Integrals of Trigonometric Functions
-
Calculus 5.3.1 Verify Functions are Inverses of One Another
-
Calculus 5.3.2 Determine Whether a Function Has An Inverse
-
Calculus 5.3.3 Find the Inverse of a Function
-
Calculus 5.3.4 Find the Derivative of an Inverse of a Function
-
Calculus 5.4.1 The Natural Exponential Function
-
Calculus 5.4.2 Derivatives of the Natural Exponential Function
-
Calculus 5.4.3 Integrals of the Natural Exponential Function
-
Calculus 5.5.1 Exponential Functions with Bases Other than e
-
Calculus 5.5.2 Differentiate and Integrate with Bases Other than e
-
Calculus 5.5.3 Applications of Bases Other than e
-
Calculus 5.6.1 Indeterminate Forms
-
Calculus 5.6.2 L’Hôpital’s Rule
-
Calculus 5.7.1 Inverse Trigonometric Functions
-
Calculus 5.7.2 Derivatives of Inverse Trigonometric Functions
-
Calculus 5.8.1 Integrate Inverse Trigonometric Functions
-
Calculus 5.8.2 Integrate Using the Completing the Square Technique
-
-
Introduction to computer science and programming
-
Preview
-
-
Intro to python programming
-
Preview
-