Responsible Lorcan Camps
Last Update 23/02/2022
Completion Time 1 day 11 hours 19 minutes
Members 7
Advanced Technical Computer Science
  • Structured programming (programming in c)
    2Lessons ·
    • C Programming Tutorial for Beginners
    • C Programming Tutorial | Learn C programming | C language
  • Discrete mathematics part 1
    34Lessons ·
    • Discrete Math - 1.1.1 Propositions, Negations, Conjunctions and Disjunctions
    • Discrete Math - 1.1.2 Implications Converse, Inverse, Contrapositive and Biconditionals
    • Discrete Math - 1.1.3 Constructing a Truth Table for Compound Propositions
    • Discrete Math 1.2.1 - Translating Propositional Logic Statements
    • Discrete Math - 1.2.2 Solving Logic Puzzles
    • Discrete Math - 1.2.3 Introduction to Logic Circuits
    • Discrete Math - 1.3.1 “Proving” Logical Equivalences with Truth Tables
    • Discrete Math - 1.3.2 Key Logical Equivalences Including De Morgan’s Laws
    • Discrete Math - 1.3.3 Constructing New Logical Equivalences
    • Discrete Math - 1.4.1 Predicate Logic
    • Discrete Math - 1.4.2 Quantifiers
    • Discrete Math - 1.4.3 Negating and Translating with Quantifiers
    • Discrete Math - 1.5.1 Nested Quantifiers and Negations
    • Discrete Math - 1.5.2 Translating with Nested Quantifiers
    • Discrete Math - 1.6.1 Rules of Inference for Propositional Logic
    • Discrete Math - 1.6.2 Rules of Inference for Quantified Statements
    • Discrete Math - 1.7.1 Direct Proof
    • Discrete Math - 1.7.2 Proof by Contraposition
    • Discrete Math - 1.7.3 Proof by Contradiction
    • Discrete Math - 1.8.1 Proof by Cases
    • Discrete Math - 1.8.2 Proofs of Existence And Uniqueness
    • Discrete Math - 2.1.1 Introduction to Sets
    • Discrete Math - 2.1.2 Set Relationships
    • Discrete Math - 2.2.1 Operations on Sets
    • Discrete Math - 2.2.2 Set Identities
    • Discrete Math - 2.2.3 Proving Set Identities
    • Discrete Math - 2.3.1 Introduction to Functions
    • Discrete Math - 2.3.2 One to One and Onto Functions
    • Discrete Math - 2.3.3 Inverse Functions and Composition of Functions
    • Discrete Math - 2.3.4 Useful Functions to Know
    • Discrete Math - 2.4.1 Introduction to Sequences
    • Discrete Math - 2.4.2 Recurrence Relations
    • Discrete Math - 2.4.3 Summations and Sigma Notation
    • Discrete Math - 2.4.4 Summation Properties and Formulas
  • Calculus part 1
    86Lessons ·
    • Calculus 1.1 A Preview of Calculus
    • Calculus 1.2.1 Find Limits Graphically and Numerically: Estimate a Limit Numerically or Graphically
    • Calculus 1.2.2 Find Limits Graphically and Numerically: When Limits Fail to Exist
    • Calculus 1.2.3 Find Limits Graphically and Numerically: The Formal Definition of A Limit
    • Calculus 1.3.1 Evaluating Limits Using Properties of Limits
    • Calculus 1.3.2 Evaluating Limits By Dividing Out or Rationalizing
    • Calculus 1.3.3 Evaluating Limits Using the Squeeze Theorem
    • Calculus 1.4.1 Continuity on Open Intervals
    • Calculus 1.4.2 Continuity on Closed Intervals
    • Calculus 1.4.3 Properties of Continuity
    • Calculus 1.4.4 The Intermediate Value Theorem
    • Calculus 1.5.1 Determine Infinite Limits
    • Calculus 1.5.2 Determine Vertical Asymptotes
    • Calculus 2.1.1 Find the Slope of a Tangent Line
    • Calculus 2.1.2 Derivatives Using the Limit Definition
    • Calculus 2.1.3 Differentiability and Continuity
    • Calculus 2.2.1 Basic Differentiation Rules
    • Calculus 2.2.2 Rates of Change
    • Calculus 2.3.1 The Product and Quotient Rules
    • Calculus 2.3.2 Derivatives of Trigonometric Functions
    • Calculus 2.3.3 Higher Order Derivatives
    • Calculus 2.4.1 The Chain Rule
    • Calculus 2.4.2 The General Power Rule
    • Calculus 2.4.3 Simplifying Derivatives
    • Calculus 2.4.4 Trigonometric Functions and the Chain Rule
    • Calculus 2.5.1 Implicit and Explicit Functions
    • Calculus 2.5.2 Implicit Differentiation
    • Calculus I - 2.6.1 Related Rates - Water Ripples (2D Circle)
    • Calculus I - 2.6.2 Related Rates - Balloon Inflation (Sphere)
    • Calculus I - 2.6.3 Related Rates - Modeling with Triangles
    • Calculus 3.1.1 Extrema of a Function on an Interval
    • Calculus 3.1.2 Relative Extrema of a Function on an Open Interval
    • Calculus 3.1.3 Find Extrema on a Closed Interval
    • Calculus 3.2.1 Rolle’s Theorem
    • Calculus 3.2.2 The Mean Value Theorem
    • Calculus 3.3.1 Increasing and Decreasing Intervals
    • Calculus 3.3.2 The First Derivative Test
    • Calculus 3.4.1 Intervals of Concavity
    • Calculus 3.4.2 Points of Inflection
    • Calculus 3.4.3 The Second Derivative Test
    • Calculus 3.4.4 Putting It All Together
    • Calculus 3.5.1 Determine Finite Limits at Infinity
    • Calculus 3.5.2 Determine Horizontal Asymptotes of a Function
    • Calculus 3.5.3 Horizontal Asymptotes - Tricky Examples
    • Calculus 3.5.4 Determine Infinite Limits at Infinity
    • Calculus 3.6.1 A Summary of Curve Sketching
    • Calculus 3.6.2 Curve Sketching - Full Practice
    • Calculus 3.7.1 Optimization Problems
    • Calculus 3.7.2 Optimization Practice
    • Calculus 4.1.1 Antiderivatives
    • Calculus 4.1.2 Basic Integration Rules
    • Calculus 4.1.3 Find Particular Solutions to Differential Equations
    • Calculus 4.2.1 Sigma Notation
    • Calculus 4.2.2 The Concept of Area
    • Calculus 4.2.3 The Approximate Area of a Plane Region
    • Calculus 4.2.4 Finding Area By The Limit Definition
    • Calculus 4.3.1 Riemann Sums
    • Calculus 4.3.2 Definite Integrals
    • Calculus 4.3.3 Properties of Definite Integrals
    • Calculus 4.4.1 The Fundamental Theorem of Calculus
    • Calculus 4.4.2 The Mean Value Theorem for Integrals
    • Calculus 4.4.3 The Average Value of a Function
    • Calculus 4.4.4 The Second Fundamental Theorem of Calculus
    • Calculus 4.5.1 Use Pattern Recognition in Indefinite Integrals
    • Calculus 4.5.2 Change of Variables for Indefinite Integrals
    • Calculus 5.1.1 Properties of the Natural Logarithmic Function
    • Calculus 5.1.2 The Number e
    • Calculus 5.1.3 The Derivative of the Natural Logarithmic Function
    • Calculus 5.2.1 The Log Rule for Integration
    • Calculus 5.2.2 Integrals of Trigonometric Functions
    • Calculus 5.3.1 Verify Functions are Inverses of One Another
    • Calculus 5.3.2 Determine Whether a Function Has An Inverse
    • Calculus 5.3.3 Find the Inverse of a Function
    • Calculus 5.3.4 Find the Derivative of an Inverse of a Function
    • Calculus 5.4.1 The Natural Exponential Function
    • Calculus 5.4.2 Derivatives of the Natural Exponential Function
    • Calculus 5.4.3 Integrals of the Natural Exponential Function
    • Calculus 5.5.1 Exponential Functions with Bases Other than e
    • Calculus 5.5.2 Differentiate and Integrate with Bases Other than e
    • Calculus 5.5.3 Applications of Bases Other than e
    • Calculus 5.6.1 Indeterminate Forms
    • Calculus 5.6.2 L’Hôpital’s Rule
    • Calculus 5.7.1 Inverse Trigonometric Functions
    • Calculus 5.7.2 Derivatives of Inverse Trigonometric Functions
    • Calculus 5.8.1 Integrate Inverse Trigonometric Functions
    • Calculus 5.8.2 Integrate Using the Completing the Square Technique
  • Introduction to computer science and programming
    1Lessons ·
  • Intro to python programming
    1Lessons ·